The chemistry of Carbon

ORGANIC CHEMISTRY

hydrocarbons

- Hydrocarbons are composed of C and H atoms (at least: may contain O, N, etc.)
- Carbon atoms are uniquely able to bond with other carbon atoms
- May be long carbon chains, branched chains, or multi-carbon rings

Carbon

4 valence electrons Nearly always covalently bonds Almost always forms 4 covalent bonds Single, double or triple bonds are possible

Hydrogen

only has 1 valence electron Nearly always covalently bonds ONLY forms 1 covalent bond NEVER the central atom "one and done" rule

Alkanes

hydrocarbon chains where carbons have only single bonds
Each carbon bonds to other carbons or hydrogens

C_nH_(2n+2)

Alkanes

 $\blacksquare CH_4$ Methane $\bullet C_2 H_6$ Ethane $-C_3H_8$ Propane • C_4H_{10} Butane $-C_5H_{12}$ Pentane

■ C₆H₁₄ Hexane C₇H₁₆ Heptane $\bullet C_8H_{18}$ Octane C₉H₂₀
 Nonane C₁₀H₂₂ Decane

Structural formulas Ex: pentane: C_5H_{12} н н н н H - C - C - C - C - Hн н н н

Condensed structural formulas

 Rather than draw out the entire structure, often condensed structural formulas are used

 Each carbon is listed by itself, followed with how many hydrogens are bonded to it

Condensed structural formulas

Ex: pentane: C₅H₁₂

H H H H H | | | | H—C—C—C—C—H | | | | | H H H H H

Condensed structural formula:

CH₃CH₂CH₂CH₂CH₃

Alkenes

- hydrocarbon chains where carbons have double bonds
- Considered to be "unsaturated" because there isn't the maximum number of hydrogens.

C_nH_{2n}

Alkenes

Table 21.5	Examples of Alkenes				
Name	Ethene	Propene	1-Butene	2-Butene	
Molecular formula	C_2H_4	C ₃ H ₆	C ₄ H ₈	C ₄ H ₈	
Structural formula	H H C=C H H	H H H H H H H H H		H H H H H H H H H H	
Condensed structural formula	$CH_2 = CH_2$	$CH_3CH = CH_2$	$CH_3CH_2CH = CH_2$	$CH_3CH = CHCH_3$	

propene

2-methyl-2-pentene

$$CH_{3}C = CHCH_{2}CH_{3}$$

 $|$
 CH_{3}

Alkynes

- hydrocarbon chains where carbons have one or more triple bonds
- Often very reactive.
- C_nH_(2n 2)

4,4-dimethyl-2-pentyne

Alkynes

Table 21.6	Examples of Alkynes
-------------------	----------------------------

Name	Molecular Formula	Structural Formula	Condensed Structural Formula
Ethyne	C_2H_2	$H-C \equiv C -H$	$CH \equiv CH$
Propyne	C ₃ H ₄	$H - C \equiv C - \begin{bmatrix} H \\ I \\ C \\ H \end{bmatrix}$	$CH \equiv CCH_3$
1-Butyne	C ₄ H ₆	$ \begin{array}{c} H - C \equiv C - \begin{array}{c} H & H \\ I & I \\ C - C - C - H \\ I & I \\ H & H \end{array} $	$CH \equiv CCH_2CH_3$
2-Butyne	C ₄ H ₆	H - C = C - C = H H - C = H H H H H H H H	$CH_3C \equiv CCH_3$

The chemistry of Carbon

ORGANIC CHEMISTRY